The Sign of a Permutation

Math 2803: Number Theory and Cryptography

Let σ be a permutation of $\{1, 2, \ldots, n\}$, i.e., a one-to-one and onto function from $\{1, 2, \ldots, n\}$ to itself. We will define what it means for σ to be *even* or *odd*, and then discuss how the parity (or sign, as it is called) behaves when we multiply two permutations. Finally, we will prove a useful formula for the sign of a permutation in terms of its cycle decomposition.

Two-line representation

One way of writing down a permutation is through its two-line representation

$$
\left(\begin{array}{cccc} 1 & 2 & \cdots & n \\ \sigma(1) & \sigma(2) & \cdots & \sigma(n) \end{array}\right).
$$

For example, the permutation α of $\{1, 2, 3, 4, 5, 6\}$ which takes 1 to 3, 2 to 1, 3 to 4, 4 to 2, 5 to 6, and 6 to 5 has the two-line representation $\alpha =$ $\left(\begin{array}{cccccc} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 1 & 4 & 2 & 6 & 5 \end{array}\right).$

Graphic representation

We can visualize the permutation σ as a (bipartite) graph G_{σ} by writing the numbers $1, 2, \ldots, n$ in two rows and joining i (in the top row) to $\sigma(i)$ (in the bottom row) with an edge for all i. For example, the graph corresponding to the permutation α above is:

Figure 1: The graph G_{α}

Inverting and multiplying permutations

Given a permutation σ , its *inverse* σ^{-1} is the permutation sending $\sigma(i)$ to *i* for all $i = 1, \ldots, n$. For example, the inverse of the permutation α and β above is $\alpha^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 1 & 3 & 6 & 5 \end{pmatrix}$. In terms of the graphic representation, inverting a permutation corresponds to interchanging the top and bottom rows of the corresponding graph.

Given permutations σ and τ of $\{1, 2, \ldots, n\}$, their product $\sigma\tau$ is the function $i \mapsto \sigma(\tau(i))$, i.e., we compose the two permutations as functions. Note that in general $\sigma \tau \neq \tau \sigma$; for example, if α is as above and $\beta =$ $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 1 & 3 & 6 & 4 & 2 \end{pmatrix}$, then $\alpha\beta =$ $\left(\begin{array}{cccccc} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 3 & 4 & 5 & 2 & 1 \end{array}\right)$ and $\beta \alpha =$ $\left(\begin{array}{cccccc} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 5 & 6 & 1 & 2 & 4 \end{array}\right).$

In terms of graphic representations, to compute $\sigma\tau$ we concatenate the diagrams corresponding to each, with τ placed above σ . For example, the following picture represents $\beta \alpha$ in our running example:

Figure 2: Graphical representation of $\beta \alpha$

Cycle decomposition

Another way of writing down a permutation is through its *cycle decomposition*. A permutation σ is called a k-cycle if there exist distinct elements $i_1, i_2, \ldots, i_k \in \{1, \ldots, n\}$ such that

$$
\sigma(i_1) = i_2, \sigma(i_2) = i_3, \dots, \sigma(i_{k-1}) = i_k, \sigma(i_k) = i_1,
$$

and $\sigma(i) = i$ for all other i. We denote such a cycle by $\sigma = (i_1 i_2 \cdots i_k)$. A 2-cycle is also called a transposition. Note that every element of a cycle can be considered as the starting point, so for example $(1234) = (2341)$.

The basic fact about permutations and cycles is the following:

Lemma: Any permutation can be written as a product of disjoint cycles. This representation is unique, apart from the order of the factors and the starting points of the cycles.

We will not give a formal proof of this result (though it's not difficult), but will instead describe the algorithm underlying its proof and give some examples.

Algorithm: (Decompose a permutation into a product of disjoint cycles)

WHILE there exists $i \in \{1, \ldots, n\}$ not yet assigned to a cycle:

- Choose any such i ;
- Let ℓ be the smallest positive integer such that $\sigma^{\ell}(i) = i$;
- Construct the cycle $(i \sigma(i) \cdots \sigma^{\ell-1}(i)).$

RETURN the product of all cycles constructed.

Example: The cycle decomposition of α is (1342)(56). Indeed, if we start with $i = 1$ then following the above algorithm we have $\ell = 4$ and we construct the cycle (1342). We next choose the unused element $i = 5$ and construct the cycle (56), and we're done.

Similarly, the cycle decomposition of β is (15462)(3). It is customary to omit fixed elements in cycle notation, so we could also write β as simply (15462).

Note that (1234) and (2341), for example, determine the same cycle, and that (12)(34) and $(34)(12)$ represent the same permutation. We can make the cycle decomposition *unique* by requiring that each cycle begins with its smallest element, and that the cycles are ordered with increasing smallest elements.

Inversions and signature

A pair (i, j) with $i, j \in \{1, 2, \ldots, n\}$ is called an *inversion* of σ if $i < j$ but $\sigma(i) > \sigma(j)$. The *inversion number* inv(σ) is the total number of inversions of σ . The permutation σ is called *even* (resp. *odd*) if $inv(\sigma)$ is even. The *sign* of σ is defined as $sign(\sigma) = (-1)^{inv(\sigma)}$. So $sign(\sigma) = 1$ if σ is even and $sign(\sigma) = -1$ if σ is odd.

It is easy to see that a pair (i, j) is an inversion of σ if and only if the edges $i\sigma(i)$ and $j\sigma(j)$ cross in the graphic representation of σ . Thus the inversion number inv(σ) equals the number of crossings in G_{σ} . This observation implies that $inv(\sigma) = inv(\sigma^{-1})$, and hence $sign(\sigma) = sign(\sigma^{-1}).$

The sign is multiplicative

We have the following fundamental formula:

$$
sign(\sigma \tau) = sign(\sigma) \cdot sign(\tau). \tag{1}
$$

To see this, note that (i, j) is an inversion in $\sigma\tau$ if and only if the paths starting at i and j cross in the top half of the composite graph but not the bottom, or in the bottom half but not the top. If they cross in both, as with 5 and 6 in Figure 2 above, then the crossings cancel out (in the figure, (5,6) is not an inversion for $\beta \alpha$). Thus $inv(\sigma \tau) \equiv inv(\sigma) + inv(\tau)$ (mod 2), which is equivalent to (1).

The sign and cycle decompositions

Suppose $\sigma = \sigma_1 \sigma_2 \cdots \sigma_t$ is the cycle decomposition of a permutation σ . Applying (1) repeatedly, we see that

$$
sign(\sigma) = sign(\sigma_1) \cdots sign(\sigma_t). \tag{2}
$$

So in order to compute the sign of an arbitrary permutation, it suffices to compute the sign of a cycle.

We first consider the sign of a transposition $\tau = (i, j)$. We claim that τ is odd. To see this, note that an edge kk with $k < i$ or $k > j$ contributes no crossing, while each edge kk with $i < k < j$ contribute two crossings (see Figure 3 below). There is only one additional edge, namely ij , which contributes one crossing. Thus the total number of crossings is odd, as claimed.

Figure 3: Crossings in a transposition

Now let $(i_1 i_2 \cdots i_\ell)$ be a cycle of length $\ell \geq 3$. One checks easily that

$$
(i_1 i_2 \cdots i_\ell) = (i_1 i_2) \cdots (i_{\ell-2} i_{\ell-1})(i_{\ell-1} i_\ell)
$$

and therefore the sign of an ℓ -cycle (for all $\ell \geq 1$) is $(-1)^{\ell-1}$. In other words, odd cycles are even and even cycles are odd.

By formula (2), we conclude that if the cycle decomposition of σ is $\sigma_1\sigma_2\cdots\sigma_t$ and σ_i has length ℓ_i , then

$$
\text{sign}(\sigma_1 \sigma_2 \cdots \sigma_t) = (-1)^{\sum_{i=1}^t (\ell_i - 1)}.
$$
\n(3)

Naturality

In addition to being a useful computational tool, formula (1) shows that the sign of a permutation is *intrinsic*, in the following sense. Suppose we replace 1 by $\tau(1)$, 2 by $\tau(2)$, etc. in both rows of the two-line representation of σ , where τ is some permutation. Then σ is transformed into the *conjugate permutation* $\sigma' = \tau^{-1}\sigma\tau$. By (1), we have

$$
sign(\sigma') = sign(\tau^{-1})sign(\sigma)sign(\tau) = sign(\sigma)sign(\tau)^2 = sign(\sigma),
$$

so that σ and σ' have the same sign.

This implies, in particular, that while the *number of inversions* of σ depends on our choice of an ordering of the set $\{1, 2, \ldots, n\}$, the sign of σ does not.

For an application to number theory, suppose p is an odd prime and q is a primitive root modulo p, and let a be an integer not divisible by p, so that $a \equiv g^k$ for some integer k. Let σ be the permutation of $\{1, 2, \ldots, p-1\}$ induced by multiplication by a modulo p and let σ' be the permutation of $\{0, 1, \ldots, p-2\}$ induced by addition of k modulo $p-1$. Then $\sigma' = \tau^{-1}\sigma\tau$, where $\tau : \{0, 1, \ldots, p-2\} \to \{1, 2, \ldots, p-1\}$ is defined by $\tau(j) \equiv g^j \pmod{p}$. By (1), the sign of σ is equal to the sign of σ' . (This is an important point in Zolotarev's proof of the Law of Quadratic Reciprocity.)

Acknowledgments

I have drawn from two main sources for this handout: Martin Aigner's "A Course in Enumeration" and Peter J. Cameron's "Combinatorics". The three figures above are all from Aigner's book.