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Let σ be a permutation of {1, 2, . . . , n}, i.e., a one-to-one and onto function from {1, 2, . . . , n}
to itself. We will define what it means for σ to be even or odd, and then discuss how the
parity (or sign, as it is called) behaves when we multiply two permutations. Finally, we will
prove a useful formula for the sign of a permutation in terms of its cycle decomposition.

Two-line representation

One way of writing down a permutation is through its two-line representation(
1 2 · · · n

σ(1) σ(2) · · · σ(n)

)
.

For example, the permutation α of {1, 2, 3, 4, 5, 6} which takes 1 to 3, 2 to 1, 3 to 4, 4 to 2,

5 to 6, and 6 to 5 has the two-line representation α =

(
1 2 3 4 5 6
3 1 4 2 6 5

)
.

Graphic representation

We can visualize the permutation σ as a (bipartite) graph Gσ by writing the numbers
1, 2, . . . , n in two rows and joining i (in the top row) to σ(i) (in the bottom row) with
an edge for all i. For example, the graph corresponding to the permutation α above is:

Figure 1: The graph Gα

Inverting and multiplying permutations

Given a permutation σ, its inverse σ−1 is the permutation sending σ(i) to i for all i = 1, . . . , n.

For example, the inverse of the permutation α and β above is α−1 =

(
1 2 3 4 5 6
2 4 1 3 6 5

)
.

In terms of the graphic representation, inverting a permutation corresponds to interchanging
the top and bottom rows of the corresponding graph.



Given permutations σ and τ of {1, 2, . . . , n}, their product στ is the function i 7→ σ(τ(i)),
i.e., we compose the two permutations as functions. Note that in general στ 6= τσ; for

example, if α is as above and β =

(
1 2 3 4 5 6
5 1 3 6 4 2

)
, then αβ =

(
1 2 3 4 5 6
6 3 4 5 2 1

)
and βα =

(
1 2 3 4 5 6
3 5 6 1 2 4

)
.

In terms of graphic representations, to compute στ we concatenate the diagrams correspond-
ing to each, with τ placed above σ. For example, the following picture represents βα in our
running example:

Figure 2: Graphical representation of βα

Cycle decomposition

Another way of writing down a permutation is through its cycle decomposition. A permu-
tation σ is called a k-cycle if there exist distinct elements i1, i2, . . . , ik ∈ {1, . . . , n} such
that

σ(i1) = i2, σ(i2) = i3, . . . , σ(ik−1) = ik, σ(ik) = i1,

and σ(i) = i for all other i. We denote such a cycle by σ = (i1 i2 · · · ik). A 2-cycle is also
called a transposition. Note that every element of a cycle can be considered as the starting
point, so for example (1234) = (2341).

The basic fact about permutations and cycles is the following:

Lemma: Any permutation can be written as a product of disjoint cycles. This representation
is unique, apart from the order of the factors and the starting points of the cycles.

We will not give a formal proof of this result (though it’s not difficult), but will instead
describe the algorithm underlying its proof and give some examples.

Algorithm: (Decompose a permutation into a product of disjoint cycles)

WHILE there exists i ∈ {1, . . . , n} not yet assigned to a cycle:



• Choose any such i;

• Let ` be the smallest positive integer such that σ`(i) = i;

• Construct the cycle (i σ(i) · · · σ`−1(i)).

RETURN the product of all cycles constructed.

Example: The cycle decomposition of α is (1342)(56). Indeed, if we start with i = 1 then
following the above algorithm we have ` = 4 and we construct the cycle (1342). We next
choose the unused element i = 5 and construct the cycle (56), and we’re done.

Similarly, the cycle decomposition of β is (15462)(3). It is customary to omit fixed elements
in cycle notation, so we could also write β as simply (15462).

Note that (1234) and (2341), for example, determine the same cycle, and that (12)(34) and
(34)(12) represent the same permutation. We can make the cycle decomposition unique by
requiring that each cycle begins with its smallest element, and that the cycles are ordered
with increasing smallest elements.

Inversions and signature

A pair (i, j) with i, j ∈ {1, 2, . . . , n} is called an inversion of σ if i < j but σ(i) > σ(j).
The inversion number inv(σ) is the total number of inversions of σ. The permutation σ is
called even (resp. odd) if inv(σ) is even. The sign of σ is defined as sign(σ) = (−1)inv(σ). So
sign(σ) = 1 if σ is even and sign(σ) = −1 if σ is odd.

It is easy to see that a pair (i, j) is an inversion of σ if and only if the edges iσ(i) and
jσ(j) cross in the graphic representation of σ. Thus the inversion number inv(σ) equals
the number of crossings in Gσ. This observation implies that inv(σ) = inv(σ−1), and hence
sign(σ) = sign(σ−1).

The sign is multiplicative

We have the following fundamental formula:

sign(στ) = sign(σ) · sign(τ). (1)

To see this, note that (i, j) is an inversion in στ if and only if the paths starting at i and j
cross in the top half of the composite graph but not the bottom, or in the bottom half but
not the top. If they cross in both, as with 5 and 6 in Figure 2 above, then the crossings



cancel out (in the figure, (5,6) is not an inversion for βα). Thus inv(στ) ≡ inv(σ) + inv(τ)
(mod 2), which is equivalent to (1).

The sign and cycle decompositions

Suppose σ = σ1σ2 · · ·σt is the cycle decomposition of a permutation σ. Applying (1) repeat-
edly, we see that

sign(σ) = sign(σ1) · · · sign(σt). (2)

So in order to compute the sign of an arbitrary permutation, it suffices to compute the sign
of a cycle.

We first consider the sign of a transposition τ = (i, j). We claim that τ is odd. To see this,
note that an edge kk with k < i or k > j contributes no crossing, while each edge kk with
i < k < j contribute two crossings (see Figure 3 below). There is only one additional edge,
namely ij, which contributes one crossing. Thus the total number of crossings is odd, as
claimed.

Figure 3: Crossings in a transposition

Now let (i1i2 · · · i`) be a cycle of length ` ≥ 3. One checks easily that

(i1i2 · · · i`) = (i1i2) · · · (i`−2i`−1)(i`−1i`)

and therefore the sign of an `-cycle (for all ` ≥ 1) is (−1)`−1. In other words, odd cycles are
even and even cycles are odd.

By formula (2), we conclude that if the cycle decomposition of σ is σ1σ2 · · ·σt and σi has
length `i, then

sign(σ1σ2 · · ·σt) = (−1)
∑t

i=1(`i−1). (3)

Naturality

In addition to being a useful computational tool, formula (1) shows that the sign of a
permutation is intrinsic, in the following sense. Suppose we replace 1 by τ(1), 2 by τ(2),
etc. in both rows of the two-line representation of σ, where τ is some permutation. Then σ
is transformed into the conjugate permutation σ′ = τ−1στ . By (1), we have

sign(σ′) = sign(τ−1)sign(σ)sign(τ) = sign(σ)sign(τ)2 = sign(σ),



so that σ and σ′ have the same sign.

This implies, in particular, that while the number of inversions of σ depends on our choice
of an ordering of the set {1, 2, . . . , n}, the sign of σ does not.

For an application to number theory, suppose p is an odd prime and g is a primitive root
modulo p, and let a be an integer not divisible by p, so that a ≡ gk for some integer k.
Let σ be the permutation of {1, 2, . . . , p− 1} induced by multiplication by a modulo p and
let σ′ be the permutation of {0, 1, . . . , p− 2} induced by addition of k modulo p− 1. Then
σ′ = τ−1στ , where τ : {0, 1, . . . , p− 2} → {1, 2, . . . , p− 1} is defined by τ(j) ≡ gj (mod p).
By (1), the sign of σ is equal to the sign of σ′. (This is an important point in Zolotarev’s
proof of the Law of Quadratic Reciprocity.)
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